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S U M M A R Y  

This paper deals primarily with a comparative study based on different methods of solution for the problem of axially 
compressed cylinders. A comprehensive discussion on the range of validity of these types of solutions is also included, 
and an extensive numerical analysis has been carried out. 

I. Introduction 

The study of hollow circular cylinders has been of considerable interest and of much practical 
importance because of their numerous uses in the industry. A detailed study of solid cylinders 
under practical systems of loading was reported by Filon [2]. This method was improved by 
Pickett [3], who introduced the multiple Fourier method in solving these problems. In the 
multiple Fourier method, two or more series of particular solutions are chosen. Another type of 
solution for problems of finite cylinders in terms of displacement functions, has been given by 
Valov [4] and Blair and Veeder [5]. Some of these solutions have been extended to the case of 
hollow cylinders [6, 7]. The analysis in [6] provides only a formal mathematical solution and 
does not deal with the numerical results. The three-dimensional elasticity solution involves a 
great deal of labor and computational difficulties. 

Johnson and Reissner [8] founded a theory of thin elastic cylindrical shells in which the 
solutions are obtained by asymptotic integration of the equations of three-dimensional theory 
of elasticity. This solution is given for a semi-infinite cylindrical shell. Subsequently, Reiss [9] 
showed that the solution obtained in [-8] represents the exact solution in the regions away from 
the edge, that is, in the interior of the shell. Further, he pointed out that the solution in [8] is not 
valid in the narrow edge zones recognized as boundary layer. The problem of axi-symmetric 
compression of hollow cylinders was solved by Widera and Wu [10] by the superposition of 
shell and boundary layer solutions on the interior solution. The solution in [10] is given for 
orthotropic cylindrical shells. But due to the nature of the particular integrals chosen in [10], 
the solution presented in that paper is not valid for isotropic cylinders. 

The purpose of this paper is two-fold: to rectify the solution in [10], in particular for isotropic 
cylinders, and to PrOvide a comprehensive numerical solution for the axially compressed 
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hollow cylinders based on various theories available in the literature. The functions and the 
series involved in the solutions present considerable difficulty in computations and it is partly 
due to this reason that no real comparative data is available. The latter goal, mentioned above, 
provides the basis for comparison, in the engineering sense, between the elasticity, shell and 
boundary layer solutions. This is done with a view to recommend guidelines for design 
engineers. 

2. Boundary conditions 

The boundary conditions for the elasticity, shell and boundary layer solutions are written 
separately as follows. 

(i) 7hree-dimensional elasticity solution: 

The cylinder having an inner and outer radii of a, b and a half length c is subjected to an axial load 
of P. The curved surfaces of the cylinder are traction free and the ends have a constant axial 
displacement w. The radial displacement mat the ends is taken as zero. Thus, 

a r = z r ~ = 0  at r = a , b ,  

u = 0  and w = _ + k  at z =  +_c. (2.1) 

The origin of the cylindrical coordinate system r, 0, z is located at mid-height. Here the constant 
k is chosen such that, 

f] aJ~ =c 2zcrdr = - P. (2.2) 

The normal and shear stresses are given by % a z, zr~ etc. 

(ii) Shell and boundary layer solution: 

For this type of solution, it is found to be convenient to change the origin of the coordinates to 
the mid-surface of the shell. Hence, in this case, the boundary conditions are 

~r r = z , z = 0  at r = a  l_+h, 

u = 0  and w = _ + k  at z=_+c .  (2.3) 

In these equation s a 1 and h represent the mid-surface radius and half thickness of shell. The 
constant k is again chosen from Eq. (2.2) with the upper and lower limits of integration changed 
to a l ' +  h and al - h respectively. 

3. Elasticity and shell and boundary layer solutions 

The two types of solutions are first discussed in the following. The mathematical form of the 
elasticity solution, which has been reported earlier [6], is being mentioned here for the sake of 
completeness of the discussion. 
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(i) Elasticity solution: 

The 4)-component of the Galerkin vector is taken as 

4) = - L z 3  + 7.2 E%z cosh %z 
m = l  0~rn 

- (1 + e~c tanh e,.c) sinh emz] [EmJo(%r ) + F,.Yo(emr)] 

+ ~ sin fl.z [A.ifl.rJl(ifl.r ) _ B.Jo(ifl.r) 

+ C.fl.rHl(ifl.r) + D.iH~(ifl.r)], (3.1) 

where, A ,  B . . . . . .  %, ft. and L are unknown constants. Also, J, Y, are Bessel functions of 
the first and second kind and H 1 are Hankel functions of the first kind. Using basic definitions 
of stresses and displacements in terms of 4), [1], the following equations can be established: 

oa 

2Gu = Z cos fl.z [A.fl.rJo(ifl.r) + BjJl(ifl .r) 
n = 1 ~n  

- C.ifl.rH~(ifl.r) - D.Hl(ifl.r)] 

1 
+ m=a ~ ~ [emz sinh e,.z - e m  c tanh e=c cosh c%z][dgmJl(%r) + VmYi(%r)] 

2Gw = - 6(1 - 2v)Lz + ~ sin fl.z { A . [ -  4(1 - V)Jo(iflnr ) 
n = l  fin 

+ ifl.rJi(ifl~r)] + Bjo(ifl~r ) + C~[4(1 - v)iH~(ifl~r) 

+ fl.rH~(ifl.r)] + D.iHg(ifl.r)} - ,.=i ~ ~ -  [%z cosh em z 

- -  (3 -- 4V + emC tanh e,.c) sinh e,.z] [EmJo(%r ) + F m Yo(%r)], 

cr = -6(1  - v)L + ~ cos f l . z {A .[ -2(2  - V)Jo(ifl.r ) 
n = l  

+ ifl.rJl(ifl.r)] + B.Jo(iLr ) + C.[2(2 - v)iHg(iLr ) 

+ fl.rHl(ip.r)] + D.iHg(iLr)} + ~ [ - % z  sinh %z 
m=l 

+ (2 - 2v + %c tanh %c) cosh %z][EmJo(~mr ) + F.,Yo(%r)] , (3.2) 

where G and v designate the shear modulus and Poisson's ratio of the material. The constants 
A., B . , . . .  are evaluated from the satisfaction of the boundary conditions given by Eqs. (2.1) and 
(2.2). These equations are further discussed in section (6). 

(ii) Shell and boundary layer solution: 

The state of stress in this case is obtained by the superposition of an elementary solution and a 
shell type solution. The elementary solution is [10]: 
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328 S. Mirza  and J. C. Rajput  

d z = - K E / c ,  w = Kz/c ,  u = Kvr/c,  (3.3) 

where the constant K = Pc/(4nal  hE). 
The basic equations for the second solution are obtained by the asymptotic integration of the 

equilibrium equations, written in cylindrical coordinates, along with the generalized Hooke's 
law and strain displacement equations [10]. In this solution the boundary conditions are taken 
as 

w = 0 ,  u = u  at z = 0 .  

The quantities st, sz, etc., represent the non-dimensional stresses corresponding to a r, ~z, etc. 
The non-dimensional displacements v r and v~ are defined as 

v~ = u/q, vz = w/q, q = a1~(1 - vZ)/E. (3.4) 

The governing equations for interior solution are obtained by choosing/~ = 2 ~. 
The second choice, # -- 2, yields the boundary layer equations. The parameters/~ and 2 are 

defined as/~ = L/a and 2 = h/a, where Lisa  small and undetermined length scale, denoting the 
boundary layer. For further explanation and discussion of these parameters we refer to [10]. 

For the interior and boundary layer solutions the variable z is non-dimensionalized as 
and q respectively, 

= (z + c ) / x / ~ l ,  rl = (z + c)/h, 

and the variable r is non-dimensionalized as p = (r - aO/h. Asymptotic expansions for stress 
and displacement components for the two cases are written as power series of 2 �89 The functions 
s(i)(~, p) and v(i)(~, p) represent the stress and displacement for the interior solution and t(i)(r/, p) 
and w(i)(rh p) give the boundary layer solution. Equating the coefficients of 2 ~ , 2 ~, 21 etc., on both 
the sides of equations and integrating in a step by step manner, a solution for the interior 
problem can be obtained [8]: 

(3 )  v, = v~ ~ + v~ 2);., Vz ='~z"~'~* + v~ 2 , 

s o = s(0 ~ + s~2)2, s~ = S(z ~ + s~212, s, = s~2)2 + s~*)2 2, etc. (3.5) 

For the boundary layer solution near the lower edge, z = - c, a procedure similar to the one 
described above yields the first system of differential equations. Assuming the form of dis- 
placements as 

w(~Z)(~l, p) = ~, a,u"l(p, fl*) exp(-fl*r/), 
n = l  

w~2)(~/, p) = 5~ a,uz(p," ft,)* exp( - f l ,  r/),* (3.6) 
? t = l  

and inserting them back in the first system equations finally yields 

oo 
n * * t~~ P) = Z a ,z , l (P,  f t , )  exp( - f l ,  r/), 

n = l  
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= Z 
n = l  

t,z (~l, P) = 
n = l  

n = l  

n , , 
an'C22(P' fin ) exp ( -  fl ~/), 

n , 
a :12 (  ?, fl~) e x p ( -  fl*r/), 

n , 
a,  z33(p, ft, ) e x p ( -  fl*~/), 

ff~ + A , g , 2 .  n _ B *  *.'n - -  e n  ua fln "2  = O, 

�9 'n * 2  n * *  * "n 
U2 "~ fin Uz/2R -- B fin ul = O. (3.7) 

The  quanti t ies 3ij, A*, B*, etc. are 

v i i  = - f l * u ] { 1  + vZR/(1  - v)} - vR~i"2, 3~2 -- {(1 - v)~i~ - f l * v u ] } R ,  

n :}: n n " * n "n 
3 1 2  = (U~ - -  flnU2)(1 -- V)/2, 333 = - - f l nUl{V  + vZR/(1  - v)} + UzV , 

A* = 2(1 - v + v2R)/ (1  - v):,  B *  = ( 2 R v  + 1 - v)/(1 - v), 

B * *  = ( 2 R v  + 1 - v ) / {ZR(1  - v)} and R = (1 - v2)/(1 + v - 2v2). 

The  no ta t ion  ~1, zi'l means  the first or the second derivative of u I with respect to p. In these 
equations,  a ,  and fl* are complex constants  obta ined  f rom the bounda ry  conditions. Boundary  
condi t ions (ii) are to be satisfied at ~/= ~ = 0 by the interior and bounda ry  layer solutions 
together.  Wi thou t  any loss of generality, the mid-surface displacements  V~(2)(~, 0) and ~3)(~, 0) 
which are a rb i t ra ry  functions of  ~ can be taken  as zero at ~ = 0. 

The  solutions for the variables u i and u 2, which are in t roduced in Eqs. (3.7) and which govern 
the complete  bounda ry  layer solution, are not  correctly presented in reference [10]. The  
modif ied solutions are presented as follows. Equat ions  (3.7) e and f can be combined  to give a 

single four th  order  differential equat ion  which is found to have repeated roots. Hence  the 
solution is taken in the fo rm 

u~ = (A 2 + pB2)  cos f l *p  + (C 2 + PD2) sin f l*p.  (3.8) 

Substi tut ion of u~ in Eq. (3.7) yields 

u~ = {(3 - 4 v ) B z / f l *  - C 2 - p D  2 cos f l *p  + {(3 - 4v )Dz / f l *  + A 2 - p C : }  sin f l*p.  (3.8) 

F o r  convenience u] and u~ are separa ted  into symmetr ic  and ant i -symmetr ic  parts  as follows: 

u] = A 2 cos f l*p  + p D  2 sin f l*p; u~ = {(3 - 4v)D2/ f l*  --}- A2} sin f l*p  - p D  2 cos f l*p,  

and 

u] = C 2 sin f l *p  + p B  2 cos f l*p,  u~ = {(3 - 4v)B2/ f l*  - C2} cos f l*p  - p B  2 sin f l*p.  

(3.9) 

Substi tut ing Eqs. (3.9) along with the no-stress condi t ions on the cylindrical surface t~ _+ 1) 
0 and o = trz(r/, _+ 1) = 0, into the basic differential equations,  the following equat ions  are 
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o b t a i n e d :  

sin 2/7* + 2/?* = 0, sin 2/?* - 2/?* = 0. 

The  f inal  exp res s ions  for  the  s y m m e t r i c  a n d  a n t i - s y m m e t r i c  so lu t ions  u~ a n d  u~ are  

u] = K .  cos  f l . ,p  + p sin fl.~p, 

u] = p .  sin fl.2P + P cos  ft.=p, 

where ,  

K .  = - 2 ( 1  - v ) / f l . , , -  tan J~nl, 

S. Mi r za  and J. C. Ra jpu t  

u~ = {3 - 4v)/fl.,  + K . }  sin f l . ,p  - p cos f t . ,p,  

u~ = {(3 - 4v)/fl.~ - p.}  cos fl.2P + P sin fl.2P, 

p.  = 2(1 - v)/fl.2 - co t  ft.2' 

(a) 

(3.10) 

In  the  a b o v e  equa t ions ,  ft.1 a n d  ft.2 a re  the  r o o t s  of  Eqs.  (a). T h e  c o m p l e x  c o n s t a n t s  a .  a re  n o w  

e v a l u a t e d  b y  us ing  the  p r inc ip l e  of  v a r i a t i o n  of  ene rgy  due  to  c o m p l e x  s t ress  field. I t  can  be  seen 

t h a t  a .  m u s t  sa t isfy  the  fo l lowing  sys t em of  equa t ions ,  

(X , . .  + Ym.)a. = bm. (3.11) 
m = l  

The  quan t i t i e s  X, . . ,  Y,.. a n d  b m are  g iven  as 

X , . J (1  - v) = sin fi~{(Zv - Kmfl, .1)(K. + 1/6~) - fl,.~(K./61 - 1 + 2/62)}/6~ 

+ sin 62{(2v - K,.flm~)(K . - 1/62) - f lml(K./62 + 1 - 2/822)}/62 

+ sin 83{(2v + Pmflm2)(P. -- 1/83) -- fl,.2(P./83 + 1 -- 2/82)}/83 

+ sin 84{- - (2v  + P,.fl,,z)(P. + 1/84) + fl,.z(P./S4 -- 1 + 2/82)}/84 

+ cos 8~{- - (2v  -- Kmflm, ) + flm~(K. + 2/81)}/8 ~ + COS 82{(2v - K,.flm~) 

+ f l , . , (K.  - 2/82)}/8 z + cos  83{(2v + ffm~m2) -]- flm2(Pn -- 2 /83 )} /83  

+ cos 84{(2v +   Pm2) - -  + 2/82}/8 , 

b m = -4v/( f l , .a  cos  fl.~t) - v2yZ{sin fl.,2[/Sm~2 - - ( 1  --  2V)](Z/flm2 -- 4/fl~2) 

- P 216//?L2 - 1 2 / / ? ' j  + c o s  Bm2D//? 2( mB 2(  P 2 - 1 + 2v) 

- ~ , , 2 ( 1 2 / f l ~ 2  - 2 / f l , , 2 ) ] } / ( 1  - v2) ,  ( 3 . 1 2 )  

Ym./(1 -- V) = sin 8~{(Kmflm~ + 1 --  2v)[(3 - 4V)/fl.x + K .  + 1/8~] 

+ ~,.~[((3 - 4v)/fl . ,  + K.) /81 - 1 + 2/fi2]}/86 

+ sin 82{- (Kin /? , .  ~ + 1 - 2v)[(3 - 4v)/fl.a + K .  - 1/82] 

+ ~ , . , [ - ( ( 3  - 4v)/fl.~ + K.) /82  - 1 + 2/822]}/82 

+ s i n  t~3{(ffmflm2 - 1 + 2v)[(3 - 4v)/fl. 2 - p .  -{- 1/83] 

- fl,.2[((3 - 4v)/fl. 2 - p.)/83 - 1 + 2/82]/83 

+ sin 84{(/~,.flm2 - 1 + 2v)[(3 - 4v)/fl.2 - p.  - 1/a 4] 
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and 

- fl.,2[((3 - 4v)lfl.2 - P.)lfi4 + 1 - 216~]}t64 

+ cos fil{--(km~ma + 1 -- 2V) -- flmlE(3 - 4v)/fl.~ + K .  + 2161]}/fi ~ 

+ cos Oz{-(Kmflml + 1 - 2v) + ~,.~[(3 - 4v)/~.~ + K .  - 2/c~2]}/fi z 

§ cos fi3{-(/5,.fl.,2 - 1 + 2v) + tim2[(3 -- 4V)/fl.2 -- p.  + 2/fi3]}/63 

§ COS ~ 4 { ( f f m ~ m 2  - -  1 + 2v) - ~ ,~2[- (3  - 4v)/fl. 2 + p. + 2/fi4]}/c~ ~, 

fil,z = fl,,,a --+ fl,,1; '~3,4 = ,~,,2 • ft,2; y4 = 3(1 - v2)/4. 

The  nota t ion  ( ) represents  the complex  conjugate  o f ( ) .  

4. Computation and discussion of results 

Numer ica l  computa t ions  for the two theoretical  cases were carried out  on an I B M  compute r  
system with double  precision. Fo r  the computa t iona l  purpose  the following inner to outer  

radius and half  length to outer  radius rat ios were studied. 

a 1 2 3 5 7 c 
b 2 '  3 4 '  6 8 b - 1 , 2 , 3  

An exper imenta l  investigation was also conducted by the authors  [16], and some of relevant  
da ta  is shown in graphs.  The  details of the exper iments  per formed are omit ted f rom this paper.  

Elasticity solution: It  has been observed that  there is a small residual stress ~r r at the curved 
surfaces r = a, b. This is par t ly  due to the contradic t ion in the bounda ry  requirements  at the 

intersection of curved surfaces and the planes z = _+ c. According to the bounda ry  condit ions 
the radial  d isplacement  is zero at the ends. In the present  case this condi t ion leads to radial  and 
tangential  strains being zero. Wri t ing these strains in terms of three-dimensional  stress state 

and solving for a r and a o results in the two relations 

a~ = vaz/(1 - v), a o = vaJ(1  - v). (4.1) 

It  is evident f rom Eqs. (4.1) tha t  a r will not  be equal  to zero at z = +c ,  since a z is finite. 
In  the numerical  analysis and solution of the infinite equat ions resulting f rom the appl icat ion 

of b o u n d a r y  condit ions and Four ier  t ransforms,  some very interesting observat ions  were made  
regarding its convergence.  Fo r  the thickest and shortest  cylinder considered in this analysis, as 

m a n y  as 15 terms were used in the series. It  was observed that  the solutions degenerate  when a 
large n u m b e r  of  terms in the series are taken. These effects were p redominan t  at the ends. On  the 

contrary,  with a large n u m b e r  of  terms used in the series, a very slow convergence was observed 
near  the middle of  the cylinder. An explanat ion of this behavior  can be obta ined  f rom the 
analysis of  the infinite system. The system of equat ion can be writ ten as 

x i =  ~ Ci, kX k§ ( i = 1 , 2 , . . . )  (4.2) 
k = l  
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From the theory of infinite systems of linear simultaneous equations, the approximate solution 
obtained by using the method of reduction converges to the solution of the infinite system 
provided the system is regular and the free terms of it are bounded. An infinite system of the form 
(4.2) is regular if the sum of the absolute values of the coefficients of each row is less than unity: 

~, I<kl < 1, i = 1, 2 ,  . . .  ( 4 . 3 )  

For a convergent system, the free terms are bounded in the form, 

Ibil __< QI[1 - ~2 ]Q,k[], i = 1 ,2 , . . .  (4.4) 

where the constant Q 1 > 0. A numerical procedure was adopted to check the regularity of the 
system. Fifteen terms were considered and the resulting equations assembled in the form of 
Eq. (4.2). The sum of the moduli of the off-diagonal elements in each row of the coefficient 
matrix was obtained, and it was observed that Eqs. (4.3) are not satisfied. It is, therefore, con- 
cluded that the system is not regular and the convergence is not guaranteed. 

Boundary layer solution: The infinite system (3.11) was solved by reducing it to a 10 by 10 
system. 

The matrix (Xm, + Ym,) is a hermitian matrix and in terms of the criteria (4.3) and (4.4) the 
system is regular. The use of the first ten terms shows an indication of definite convergence. 
The roots ft,1 and fl,2, as given in [12, 13], have been used in the calculations. In the boundary 
layer solution only the first non-zero system has been considered. 

All the graphs generated from the numerical computations are notbeing presented in this 
report. The conclusions are, however, based on all the results. Figures 1, 2, 3 and 4 show the 
distribution of longitudinal stress obtained from the elasticity and shell and boundary layer 
solutions at various z/c ratios. A comparison of the longitudinal stress is shown in Figure 5 and 
6. This variation is plotted against z/c. Figures 7 and 8 show the comparison of the radial 
displacement. 

The two solutions give closer results in the regions away from the ends. For longer and 
thinner cylinders (c/b > 2 and a/b < 2) both the solutions differ very slightly from each other. 
The maximum variation in the prediction from these two theories is about 27~o of the average 
stress a for a cylinder with a/b = -~ and c/b = 1. This disparity occurs primarily 'in the edge 
zones. The minimum is about 2.5~ for a cylinder with a/b = ~ and c/b = 1. The variations of the 
radial and axial displacement, not shown here, also follow the same general pattern. 

Comparison is made on the basis of how close the experimental variation is to any of the two 
solutions. On this basis it can be concluded that the three-dimensional theory gives better 
results for thick and short cylinders (a/b < = �89 and c/b = < 3). While the shell and boundary layer 
solution should be preferred for thin and long cylinders (a/b > �88 and c/b > 2). In the 
intermediate range of the parameters a/b, c/b and in the regions away from the end of the 
cylinder both the theories give similar results. 

It can be seen that by properly accounting for the edge effects, shell theory gives good results 
for relatively thick shells (a/b --- 0.75). The results obtained from classical shell theory, as 
reported earlier [15], were restricted to a/b = 0.9. 
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Figures 1, 2. Distribution of longitudinal stress. 
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Figures 6, 7. Variation ofradialdisplacement along the outer surface. 
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